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Existing theories for calculating the energy transfer rates to gravity waves due to 
resonant nonlinear interactions among wave components whose lengths are long in 
comparison to wave elevations have been verified experimentally and are well accepted. 
There is uncertainty, however, about prediction of energy transfer rates within a set of 
waves having short to moderate lengths when these are present simultaneously with a 
long wave whose amplitude is not small in comparison to the short wavelengths. Here 
we implement both a direct numerical method that avoids small-amplitude 
approximations and a spectral method which includes perturbations of high order. 
These are applied to an interacting set of short- to intermediate-length waves with and 
without the presence of a large long wave. The same cases are also studied 
experimentally. Experimentally and numerical results are in reasonable agreement with 
the finding that the long wave does influence the energy transfer rates. The physical 
reason for this is identified and the implications for computations of energy transfer to 
short waves in a wave spectrum are discussed. 

1. Introduction 
In recent years, there has been increased interest in the energy balance of short sea 

waves because of the influence of these waves on microwave remote sensing of the sea 
surface. One component of the energy balance is the nonlinear energy transfer among 
differing wavenumbers. 

It is well accepted that energy transfer in the energy-containing portion of a wave 
spectrum can be calculated by the method pioneered by Hasselmann (1962). This is a 
stochastic treatment of fundamental interactions between groups of four waves first 
studied theoretically by Phillips (1960). Both the fundamental theory and the stochastic 
application are based on a perturbation theory which presumes that wave amplitudes 
are small in comparison to wavelengths. This presumption is reasonably well satisfied 
by waves whose lengths and frequencies are close to those at the spectral peak. Most 
applications of the Hasselmann theory have been for waves whose frequencies are less 
than 2.5 times the spectral peak frequency. For typical spectral energy distributions, 
most of the energy transfer at a specified frequency comes from quartet interactions of 
waves in a relatively small frequency range surrounding the specified frequency 
(Hasselmann & Hasselmann 1985). 

When short sea waves are considered, they generally exist in the presence of long 
waves whose amplitudes are not small in comparison to the short wavelengths. Two 
questions arise. 

t Present address : Bilkent University, Faculty of Business Administration, Bilkent 06533, Ankara, 
Turkey. 
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FIGURE 1. (a) Wave configuration for the special triad. (b)  Wave configuration for the special 
triad in the presence of an underlying long wave. 

(i) To what extent is the nonlinear energy transfer to (or from) short waves due to 
interactions with waves with relatively similar frequencies altered by the presence of 
large waves with much lower frequencies and correspondingly longer lengths? 

(ii) To what extent are the short-wave energy transfer results of computation 
methods based on small-amplitude expansions compromised by the presence of long 
waves? 

In this paper we have answered these questions, in part, through computations and 
experiments on a set of interacting wave components both with and without the 
presence of an additional long large wave. The numerical studies comprise two 
approaches. 

Our first approach is a direct numerical method which avoids perturbation 
expansions altogether. A time-stepping scheme is used to trace the evolution of water 
waves in a bounded domain. With prescribed initial conditions, the fully nonlinear 
boundary conditions are time-marched to determine the free-surface elevation and 
velocity potential in time. This requires knowledge of the normal velocity on the free- 
surface whose computation is numerically intensive and requires considerable 
computational resources. Our direct approach to obtain the normal velocity is to apply 
Green’s theorem using the Rankine source Green function and to solve the resulting 
integral equation at each time step. 

The second numerical approach is a spectral method which utilizes small-amplitude 
expansions, but which includes perturbations of arbitrarily high order. It is along the 
lines of the spectral methods initially developed and used for other problems by 
Dommermuth & Yue (1987) and West et al. (1987). By comparing results from the two 
approaches, the accuracy of using the expansions is assessed. 

Experimental confirmation exists for the theory of the growth of a short wave due 
to nonlinear interactions amongst intermediate-length waves in the absence of a large 
long wave (Longuet-Higgins & Smith 1966; McGoldrick et al. 1966). These 
experiments clearly showed the energy transfer and confirmed the initial growth rates 
given by the classical perturbation theory. Later Tomita (1989) repeated the 
experiments in a much larger wave tank to quantify the long-term evolution of the 
interaction. None of these experiments, however, addressed the accuracy of the 
perturbation scheme in the presence of a long large underlying wave. We conducted a 
laboratory experiment in which both a long wave and resonantly interacting 
intermediate-length waves were generated and we measured the growing short wave. 
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Our experiment provides a basis of comparison for our numerical findings on the 
influence of the long wave on the nonlinear interactions amongst the intermediate- 
length waves. 

A principal finding here is that a long wave significantly alters energy transfer to a 
short wave from intermediate-length waves with prescribed linear amplitude 
components. In addition to the numerical and experimental data, we are able to 
provide a physical explanation for why this occurs. 

The results have implication for computations of nonlinear-energy transfer in a wave 
spectrum. This is complicated by the fact that the high-frequency tail of a measured 
wave spectrum is influenced not only by the usual linear wave spectrum proportional 
to the squares of wave amplitudes, but also significantly by the quadratic spectrum 
which depends on the fourth power of wave amplitude. In an appendix we derive 
expressions for the quadratic spectrum for unidirectional seas. Computations of 
nonlinear energy transfer in a wave spectrum require the full directional spectrum, but 
the simpler unidirectional spectrum is sufficient for showing that use of measured 
spectral values for computing nonlinear energy transfer to short waves must be done 
with care and caution. 

2. The nonlinear wave-wave interactions 
It is now well known that wave components exchange energy through nonlinear 

interactions. For gravity waves, the resonant nonlinear interaction generally requires 
a quartet of waves. The resonance conditions for the frequencies and wavenumbers 
under which these interactions take place can be written as (see Phillips 1960) 

W 1 T W , T W , f W 4  = 0, 
k , f k , f k , f k 4  = 0, 

provided that the linear dispersion relation holds for each wave component: 

W ;  = g k n  for n = 1 , 2 , 3 , 4 ,  ( 2 )  

where g is the acceleration due to gravity. When the resonance conditions are satisfied, 
the third-order nonlinear interactions between three waves, which we call primary 
waves or primaries, result in a forcing function that has exactly the same frequency and 
wavenumber as the fourth. Since the fourth wave is a free wave, by virtue of its 
frequency and wavenumber satisfying the dispersion relation, it grows when forced at 
its own frequency and wavenumber, thereby obtaining energy from the other waves. 
The growing wave is called the tertiary wave. When the first three interacting waves, 
but not the fourth, are initially present, the amplitude of the tertiary wave, ater(t), 
behaves initially as 

where K is the interaction (coupling) coefficient involving the wavenumbers, wave 
frequencies and the first-order amplitudes of the first three wave components. 

Of all possible wavenumber configurations of the vectors k, ,  k,, k,, and k,, one is 
particularly convenient for theoretical and numerical studies. As illustrated in figure 
1 (a),  two of the primary wave trains coincide (say k,)  and are perpendicular to another 
(k,) so that there are only three distinct wavenumbers in the interacting resonant 
quartet and the wavenumber of the resonant tertiary wave is given by 

later(t)l = Kt,  ( 3 )  

k,,, = 2k, - k,. (4) 
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The resonance conditions for this special triad require that the following equation 
along with (4) be also satisfied: 

where the linear dispersion relation holds for each component. Combining the 
resonance conditions with the linear dispersion relation determines the theoretical ratio 
for the primary wave frequencies wJw2 = 1.73567 (Longuet-Higgins & Smith 1966). 
From the ratio of the primary wavenumbers, the tertiary wave is found to make an 
angle of 9.42" with k,. A prescribed wave frequency for one of the primaries defines the 
characteristics of the other members of the triad. 

Phillips (1960) and later Longuet-Higgins (1962) studied this special triad utilizing 
perturbation theory and they derived theoretical predictions having the form of (3) for 
the initial growth of the resonant tertiary wave. This special case was also used as a 
bench-mark in the aforementioned experiments. In the theory of Longuet-Higgins 
(1962), the fact that the tertiary wave grows at the expense of the primary waves is not 
accounted for and the amplitudes of the primary wave components are treated as 
constants throughout the course of the interaction. For the set of waves in the 
canonical situation considered here, the initial growth rate does not continue since the 
tertiary wave interacts with the others once it has grown to finite size. Thus the physical 
interpretation of (3) should be restricted to a brief initial time which is small in 
comparison with the interaction time. This limitation was overcome by Benney (1962) 
who showed that the energy sharing mechanism in the interacting quartet by analysing 
the full problem of energy exchanges amongst a set of four resonant waves satisfying 
(1). Based on the original work of Zakharov (1968) and the subsequent work of 
Crawford, Saffman & Yuen (1980), Stiassnie & Shemer (1984) derived a set of coupled 
nonlinear equations governing the evolution of the amplitude of each discrete mode 
involved in the quartet interaction up to third order. We shall see that to make the 
theory based on perturbations about the mean free surface accurate for the case at 
hand with the long wave, higher-order contributions from the spectral method are 
required. 

In view of the wealth of background information on the interacting special triad, we 
used it as a 'base case' for our numerical and experimental investigations. Then we 
added the underlying long wave having wavenumber k, such that the wavenumber 
diagram took the form of figure l(b). Numerical and experimental studies were 
conducted on this set of waves. The important point here is that the long-wave 
amplitude is not necessarily small in comparison to the tertiary wavelength. By taking 
this approach we were able to assess the accuracy of the theoretical and numerical 
methods in addition to our principal objective which was determination of the 
influence of the long wave on the resonant interaction between the other waves. We 
found that the presence of the long wave modifies the growth of the tertiary wave, and 
why this happens. 

wter = 2w,-w,, (5) 

3. Numerical methods 
A direct numerical method that avoids the perturbation theory approximation was 

developed by Olmez (1991) to compute the energy transfer for a quartet of waves. A 
spectral method program was also developed by us for further comparisons with the 
direct numerical method. The spectral method is a numerical application of 
perturbation theory, achieving numerical efficiency by using Fourier expansions in the 
horizontal domain, which includes perturbations of arbitrarily high order, thereby 
avoiding the third-order limitation of the conventionally used methods. 
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For both methods, the approach taken is to consider flows governed by a velocity 
potential, 4, satisfying Laplace's equation beneath a time varying free surface of 
elevation, 5. The time evolution is determined by stepwise integrating the kinematic 
and dynamic free-surface boundary conditions : 

3 = w(1 + O ~ . V ~ > - V ~ , . V C :  on z = c, (6)  
at 

where $s and w represent the velocity potential and the vertical velocity on the free 
surface. In the above equations, V = @/ax, a/ay) denotes the horizontal gradient. The 
time integration provides updated values of the surface elevation and velocity 
potential. In order to completely specify the flow so that a subsequent time-step 
integration can be carried out, the vertical velocity, w, must be found. The difference 
between the direct and the spectral methods lies in the way w is determined. 

For our calculations with the spectral method, the time integration of the free- 
surface boundary conditions is carried out using a fourth-order explicit Runge-Kutta 
method with a constant time step. For the direct method, a fourth-order multistep 
Adams-Bashforth-Moulton method is preferred over Runge-Kutta owing to its 
computational efficiency since the numerical technique is computationally expensive. 
Various time-step sizes were tested in each of our calculations. A general finding was 
that a good time-step size is 2 to 3 % of the shortest fundamental wave period in the 
problem under consideration. No significant gains in accuracy were achieved with 
shorter time steps. 

During the time-stepping procedure, a high-wavenumber instability on the free 
surface develops which, if not suppressed, eventually causes the numerical scheme to 
break down. This type of instability, often referred to as sawtooth, has been reported 
by several investigators (Longuet-Higgins & Cokelet 1976 ; Baker, Meiron & Orszag 
1982; Dommermuth et al. 1988). We adopted a fast Fourier transform (FFT) 
technique by which all the high-wavenumber instabilities are filtered out. The surface 
wave elevation and the velocity potential are transformed into the Fourier space by a 
two-dimensional FFT, and all the higher-order harmonics that are above the 
wavenumber at which the instability is detected are filtered out. Then transforming 
back into the physical space by an inverse FFT, the computations are carried out for 
subsequent time steps. 

3.1. Direct numerical evaluation 
In our direct numerical procedure, the normal derivative of the potential is determined 
by solving the Green's theorem integral equation : 

where the first integral is in the sense of a Cauchy principal value and excludes 
integration over the field point p .  The singularity is located at the source point q. 
G ( p ,  q )  = l/lrl is the three-dimensional free-space Green function where r = Ip-41 is 
the distance between the source and field points. 

The solution is carried out over the surface, S, of a domain defined by the calculated 
free-surface shape at each time and vertical sidewalls that intersect in a rectangular 
prism. With the resulting knowledge of the normal derivative of the potential, the 
vertical component can be calculated since the surface normal vector and values of the 
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potential on the surface are known. By alternately time stepping (6) and (7) and solving 
the integral equation (8), the surface elevation and the velocity potential as functions 
of time are obtained. After each time step, the two-dimensional Fourier transform of 
the free-surface shape is calculated to separate and evaluate the amplitude of the 
tertiary wave. 

Since deep-water waves are considered, the computational domain can be freed of 
the bottom face provided that the domain is deep enough for there to be negligible flow 
at its bottom. Spatially periodic solutions are considered so that the boundary 
conditions on the side faces become periodicity conditions. We solve the integral 
equation (8) numerically by discretizing the boundary S into N quadrilateral panels, 
and by satisfying the equation at a prescribed collocation point on each panel. 
Collocation points are chosen at the centroid of each panel where the boundary 
conditions are invoked. The simplest form is to consider the singularity strengths to be 
constant on each panel and each panel to lie in a plane. Each integral in (8) now 
depends only on the form of the Rankine source Green function, G, and the geometry 
of the panels. Explicit expressions for these integrals, which we have used in our 
numerical implementation, are given by Newman (1986). This direct numerical 
evaluation is also referred to as the boundary integral equation method (BIEM). 
Specific details of our BIEM are given in Olmez (1991) and in Olmez & Milgram 
(1995). 

3.2. Evaluation by the spectral method 
Dommermuth & Yue (1987) and West et al. (1987) developed high-order spectral 
methods for the study of nonlinear gravity waves. These references provide complete 
descriptions so we only summarize the method here. 

The spectral method also uses (6) and (7) to march the surface potential and 
elevation forward in time. It differs from the direct numerical method in the way it 
evaluates the vertical derivative of the potential after each time step. 

The spectral method presupposes that the velocity potential can be expanded as a 
regular perturbation expansion in the following form : 

where x = (x, y )  and M denotes the order of expansion adopted in the procedure. 
Following Dommermuth & Yue (1987), each Qm is further expanded in a Taylor series 
about z = 0 and the surface potential is obtained in the following form: 

Expanding (10) and collecting terms at each order, provides the following sequence of 
equations for the unknown Gm in terms of the surface potential os(x, t ) :  

@ l k  0, t )  = @&, 0, (1 1) 

The velocity potential at each order m (assuming periodic boundary conditions), for a 
wave field composed of N free wave modes, is expressed by the following sum: 

N 

Q m ( x ,  z ,  t )  = C $m,  n(t)elkJzeikm.x, m = 1,2,. . . , M ,  (13) 
n=l 
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where the k, are the wavenumber harmonics of the horizontal domain, k = (kz, kJ, 
and deep water is implied. For each time, the modal amplitudes, & n ,  are found by 
substituting (13) into (11) and (12), and solving for the unknowns as a function of 
lower orders. The vertical velocity is then approximated by the following expression : 

Fast Fourier transforms are employed for moving back and forth between the 
physical and Fourier domains. For the time-stepping procedure, all the horizontal 
gradients of the surface potential and the wave height are performed in the Fourier 
domain. Starting with prescribed initial conditions for $s(x, to) and [(x, to), the free- 
surface boundary conditions are integrated in time over equally spaced collocation 
points, and the new values of the surface potential and the free-surface shape are 
computed in the physical domain. Based on the above approach, we prepared a 
computer algorithm for solving the nonlinear wave problems presented herein. 

4. Experimental apparatus and procedure 
The experiments were carried out in a rectangular tank at the Institute for Marine 

Dynamics (IMD) of the National Research Council of Canada. The overall horizontal 
dimensions of the IMD tank are 75 m by 32 m and the maximum depth is 3.5 m. There 
are wavemakers on two adjacent sides of the tank with wave absorbers on the two 
remaining sides. 

The wavemakers are segmented, with each segment hydraulically driven by a 
feedback control system so as to follow an applied electrical input signal. Each segment 
can have an arbitrary amount of piston-like or rotating flap-like motion. We operated 
the segments using piston-mode. All the segments on a single side were given identical 
motions to create intersecting (nearly) two-dimensional wave trains. Small amounts of 
leakage between adjacent segments result in small deviations from two-dimensionality . 
At the corner of the tank where the wavemakers would intersect, they are replaced by 
a solid rectangle which projects into the tank beyond the wavemakers by a = 0.185 m 
on one side and b = 0.675 m on the other side as shown in figure 2. 

In order to test the linearity of the wavemaker system, waves from sinusoidal input 
signals in the frequency and amplitude ranges planned for the experiment were made 
by the wavemakers along one wall with those on the adjacent wall stationary. These 
waves were Fourier-analysed to assess their harmonic content. The ratios of the first 
and second harmonic amplitudes to that of the fundamental generally agreed with 
Stokes wave theory to within 1 YO of the fundamental amplitude, although occasional 
errors up to 3% were observed. These errors correspond to 0.3 and 0.9 mm 
respectively. In all likelihood, they are due to variations in the shapes of the menisci 
of the water against the wave gauge wires which vary according to surface 
contamination. This was minimized by frequent cleaning. 

Wave absorbers at the IMD facility are installed on the two tank sides opposite the 
wavemakers and are of the variable-porosity type described by Jamieson & Mansard 
(1987). Information from earlier tests done at IMD gives wave reflection coefficients of 
about 3% for the fundamental amplitudes and frequencies of our experiments. 
However, our data on the spatial variation of wave amplitudes indicate that the 
reflection coefficient could be as large as 10 %. The dominant resonant group involving 
reflected waves contains the original k, component and the reflected k, component. To 
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FIGURE 2. Plan view of the wave tank at IMD. 

Wavenumber Frequency Wavelength Period 

1.735 67 0.33 1 94 0.576 15 1 3.012 55 
2 1 .ooooo 1 .ooo 00 1.00000 1 .ooo 00 

Tertiary 6.107 53 2.471 34 0.163 73 0.40464 

TABLE 1. Data for the special triad 

Wave lklllk2l W / @ z  hlA2 TI  T,  

avoid an error from this effect, in our experiments the k,  wave propagated in the long 
tank direction and we used the data acquired before the reflected k,  wave reached the 
wave gauges (see figure 2) in most cases (see below). 

Measurements of the free-surface elevation were made by an array of resistance-type 
wave gauges made of two parallel 30-gauge copper wires spaced 1 cm apart. These 
wave gauges were calibrated by lowering and raising the wires through a known 
distance in calm water as well as by measuring sinusoidal waves with independently 
determined amplitudes. Five wave gauges were located at distances of 4.0,6.0,8.0, 10.0 
and 19.7 m away from the wavemaker in the direction of the tertiary wave propagation 
over which the interaction takes place. According to the theory in $2, the tertiary wave 
at resonance is at an angle of 9.42" to the direction of the first primary wave (away from 
the second wavemaker with a slight component towards the first wavemaker). This 
generates a narrow reflection region from the first wavemaker. Hence the last wave 
gauge was located 9.07 m away from the first wavemaker to keep it out of the reflection 
zone. A plan view of the tank along with the gauge locations is shown in figure 2. 

Measurements of the outputs from the five wave gauges were made with a 12-bit A- 
to-D converter and recorded on a computer in real time for subsequent data analysis. 
Each run consisted of 4096 points per gauge channel taken at a sampling frequency of 
16 Hz which corresponds to 256 s of data, beginning 30 s after the wavemakers were 
turned on. At each sample time, all five channels were sampled in a time period of 
0.04 ms (0.01 ms delay between channels). The 16 Hz sampling rate was chosen to 
avoid aliasing based on initial studies of measured data showing that spectral levels 
above 5 Hz were less than 0.5 % of the mean levels of the primary (k ,  and k,) waves. 
To maximize the dynamic range and the signal-to-noise ratio of the high-frequency 
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tertiary wave data, the wave gauge system frequency response increased with frequency 
in the data range in a manner similar to that used by Olmez & Milgram (1992). 

The wavemakers were operated with primary wave circular frequencies 
w1 = 6.974 rad s-l and w2 = 4.018 rad s-' and as such the ratio w, /w,  yields the 
theoretical value required for the resonant interaction. The long primary and swell 
(long wave) were generated simultaneously and propagated along the long side of the 
tank. The short primary wave propagated long the short side of the tank. 

Spectral analysis was used to analyse the frequency distribution of wave energy at 
each wave gauge. The energy distribution in the wave field can be deduced from its 
power spectrum defined as 

(15) 

where T is the length of the portion of the record used and z ( t )  is the data record from 
the measurements. The initial factor of 2 makes the spectrum one-sided. Tertiary wave 
amplitudes were computed at each gauge location from the integral of the surface 
elevation spectrum around the fundamental tertiary wave frequency : 

a(@,,,) = [2 S(w) dwll/l, 
Wter-Aw 

where Aw was chosen to be wter/50. 
For a few runs, the entire 256 s record was divided into eight records, each 32 s long. 

These were individually analysed to determine the standard deviation of the measured 
tertiary wave amplitude. For the 32 s records, the standard deviation was 19.5 % of the 
tertiary amplitude. 

Starting when the wavemakers are turned on, the tertiary wave reaches full 
theoretical growth at all wave gauges after 39 s and the reflection of the long primary 
wave from the tank wall absorber first reaches a wave gauge in 113 s. Therefore, the 
portion of the data shown in figures 4(a) ,  6(b) and 7 used in studying tertiary wave 
evolution was from 39 to 103 s after the wavemakers were turned on, corresponding 
to 9 to 73 s in the data records. This provided data sections of 1024 points for which 
the standard deviation of measured tertiary wave amplitudes is 13.8 %. For the cases 
shown in figures 4 ( b )  and 6(a), wave disturbances, probably related to wavemaker 
startup, evident in the early portions of the data record led us to analyse 1024 point 
data segments starting after the k, reflected wave reached the wave gauges. 

5. Numerical and experimental results 
We first consider the special triad alone and compute the growth of the resonant 

tertiary wave for primary wave steepnesses, e, of 0.1 and 0.2.  The smaller steepness is 
used for benchmark purposes. Then, moderately steep waves are considered for testing 
the accuracy of the perturbation analyses. These numerical results are compared with 
our experimental measurements for the special triad. Then, a long wave whose 
amplitude is of the order of the tertiary wavelength is added to the special triad and 
the tertiary wave growth is computed under the influence of the long wave. These 
computations are also compared with the experimental results to confirm the validity 
of our numerical findings. 

The tertiary wave amplitudes in the experiments are very small, typically a few 
millimetres. Although fractional differences between numerical results and experiment 
are sometimes substantial, in almost all instances the actual amplitude difference is less 
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than 1 mm. Of the 22 regularly analysed data points shown subsequently, 16 of them 
show differences in amplitude between experiment and computation of less than 1 mm. 
The remaining six points have differences between experiment and computation of less 
than 2 mm. 

5.1. Results for the special triad alone 

The special triad we will consider is composed of two primary waves (k, and k,) and 
the resonant tertiary wave as shown in figure 1. Based on the theoretical ratio of wave 
frequencies for resonance, table 1 summarizes the characteristics of each member of the 
triad. 

The numerical solution to the boundary-value problem requires that the free-surface 
shape and the velocity potential be prescribed at the initial instant of time. We found 
that the numerical calculations are sensitive to initial conditions in that errors in them 
introduce standing waves in the system. We used perturbation theory to calculate 
initial conditions for the interacting triad up to second and third order in wave slope 
(Olmez 1991), with the latter naturally introducing fewer of the erroneous standing 
waves. Using these, the subsequent computations with the BIEM were fully nonlinear 
whereas the spectral method computations were carried out to the fifth order. 

For the BIEM, the free-surface geometry is approximated by 32 elements in each 
direction. Along the depth, which is half the wavelength of the longer primary, 20 
elements were used with a quarter-period cosine-spacing distribution, dense at the top. 
Filtering is applied at every time step such that wavenumbers above the eighth 
harmonic of the fundamentals are filtered out. With tenth-order filtering, a sawtooth 
appearance on the surface took over soon after one wave period of the long primary, 
at which point the departure from the initial energy and momentum was considerable. 
This does not occur with the eighth-order filtering. 

For the spectral method, 64 elements are used in each direction on the free surface. 
This provides 32 unaliased modes in each direction. With this spatial resolution, 
convergent results are obtained with a fifth-order (M = 5) approximation. Despite 
having fifth-order accuracy, Fourier modes up to the tenth harmonic of the 
fundamentals are preserved in the computations. Therefore, smoothing is applied at 
every time step such that wavenumbers higher than the tenth harmonic of the 
fundamentals are eliminated. A time step of TJ50 is used for both methods. 
Convergence with time-step size is examined in Olmez (1991) and At = TJ50 is found 
to be quite satisfactory. 

Figures 3(a) and 3(b)  show our computed tertiary wave amplitudes for primary 
wave steepnesses of 0.1 and 0.2 with second- and with third-order initial conditions, 
respectively. The normalized amplitude, (ateJN, shown on the ordinates of the 
figures is 

ater kter 
( a t e r ) N  = (a, kJ2(a2 k,) ' 

The theoretical results shown in the figures are based on ( 3 )  as given by the classical 
theory (Longuet-Higgins 1962), and are normalized according to (17): 

(ater)N = 2.77968 Dlhter, (18) 
where D is the distance over which the interaction takes place. 

Computations with our BIEM were performed only up to D = 3hter because of the 
computationally expensive nature of this numerical scheme. Note that the numerical 
computations display regular oscillations in the amplitude of the tertiary wave when 
the second-order initial conditions are used. These oscillations were much smaller when 
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FIGURE 3. Growth of the tertiary wave for (a) second-order initial conditions, 
and (b) third-order initial conditions. 

initial conditions were accurate to the third order. An analysis of the relative phases 
between the first-order velocity potential and the wave elevation shows that these 
oscillations are consistent with their being due to standing waves. It is important to 
note that the oscillations are essentially identical for the entirely separate direct and 
spectral methods lending weight to the conclusion that they are associated with the 
initial conditions rather than numerical errors. For the nonlinear computations to be 
exact, purely travelling nonlinear waves are required for the initial conditions whereas 
we have used conditions for travelling waves up to third order. 

For the second-order initial conditions, the tertiary wave starts with a zero 
amplitude whereas for the third-order initial conditions, the tertiary wave has a non- 
zero amplitude at t = 0. This is a steady-state, bound component which is in 
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quadrature with the growing component and whose existence is due to cross- 
interactions of the primary waves at the third-order as quantified by Olmez (1991). The 
growing tertiary wave component has a zero initial amplitude. 

From figures 3(a) and 3(b), a comparison between the spectral method and the 
BIEM reveals that both methods are in remarkably good agreement. As a check on the 
global numerical accuracy of the BIEM, total energy and horizontal momenta are 
computed at every time step. These quantities are well conserved (to within 0.05 YO and 
0.1 % for the lower and higher steepnesses, respectively) during the entire simulation. 
For mild nonlinearities, the accuracy of the classical perturbation theory is good for the 
initial growth of the tertiary wave. For steeper primary waves, the accuracy of the 
perturbation approximation is restricted to a briefer initial time, which is consistent 
with the analysis of Tomita (1989). 

To provide a basis for the accuracy of the low-order mode-coupled equations in the 
long-term evolution of the wave field, we consider the results from the low-order mode- 
coupled equations (Stiassnie & Shemer 1984) and compare them with those from the 
high-order spectral method and from the experiment. 

The modal amplitudes in the triad for the mode-coupled equations are obtained by 
solving a system of three nonlinear complex ordinary differential equations (Stiassnie 
& Shemer 1984, equation (4.1)) in time. A fourth-order Runge-Kutta method is 
employed with a time step of T,/120. The typical interaction distance needed for the 
tertiary wave to be comparable to a primary wave in size is predicted to be (Phillips 
1960) : 

Figures 4(a) and 4(b) show the long-term interaction of the special triad for two 
steepnesses. For both primary waves having a steepness of 0.1, the typical interaction 
distance requires 50ht,,. From figure 4(a), both the spectral method and the mode- 
coupled equations predict the first maximum of the tertiary wave to occur near 48ht,, 
which closely corresponds to the theoretical interaction distance found above, Aside 
from a slight discrepancy in the maximum amplitude of the tertiary wave, mode- 
coupled equations performed well at this steepness. The higher-steepness case has 
a, k,  = 0.174 and a, k,  = 0.180, which are the steepnesses achieved in the experiment. 
For this case, the theoretical interaction distance reduces to 16h,,, because of stronger 
nonlinearity. The first maximum of the tertiary wave is predicted near 16.5ht,, and 
1 7ht,, by the mode-coupled equations and the spectral method, respectively. Although 
the mode-coupled equations do not completely agree with the spectral method for the 
entire simulation, the overall behaviours are similar. These comparisons validate the 
accuracy of mode-coupled equations for small steepnesses, with discrepancies being 
apparent at the higher steepnesses. Our experimentally observed amplitudes of the 
tertiary wave at the five wave gauge locations are also plotted in figures 4(a) and 4(b). 
Agreement between experiment and the numerical computation is quite good except 
for the last data point in each case which appears to be in error by about 1.9 mm in 
amplitude. 

5.2.  Results for  the special triad on a long underlying wave 
When a long wave whose amplitude is comparable to the tertiary wavelength is added 
to the wave field, the displacement from the equilibrium level for the tertiary wave will 
be on the order of its wavelength. This clearly violates the size restriction on the small 
expansion parameter of a perturbation expansion about the mean free surface for the 
short wave of interest. It would be possible to develop an expansion about the surface 
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FIGURE 4. A comparison of the mode-coupled equations with the spectral method and the 
experiment for primary wave steepness of (a) 0.1, (b) 0.174 and 0.180. 

of the long wave to avoid this violation. On the other hand, we shall find that the same 
spectral method used above is accurate for the case at hand, in spite of the larger 
expansion distances. 

The first objective here is to compute the initial tertiary wave growth under the 
influence of the long wave and make a comparison between results of the direct 
numerical method which has no size restriction and those methods that rely on 
perturbation analysis. Once we establish the validity of the more computationally 
efficient spectral method calculations, these will be used in predicting the long-term 
evolution of the tertiary wave for further comparisons with the experiments. 

The long wave added to the special triad is chosen to be propagating in the same 
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Wavenumber Frequency Wavelength Period 
Wave IklIlkA o l w z  v4 TI T, 

3 0.25 0.50 4.00 2.00 
TABLE 2. Characteristics of the long-wave component 

direction as k, with a wavelength of 4 4 .  Table 2 gives the characteristics of the long- 
wave component. The width of the computational domain in the y-direction is equal 
to the long wavelength along which we used 64 panels. This leaves 16 panels per 
wavelength for the longer primary wave which also travels in the same direction. The 
length of the domain in the x-direction is equal to the wavelength of the short primary 
wave, A,. The presence of the long wave makes this computational task quite a 
demanding one for the BIEM. Therefore, we used only 16 panels in the x-direction, 
maintaining the same spatial resolution for the primary waves. As before, 20 panels are 
used along the depth, which is now chosen to be half the wavelength of the long wave. 
Filtering is applied at every time step using fifth- and 17th-order filtering in the x- and 
y-directions, respectively. With our current spatial resolution, filtering at the above 
levels was needed to keep the simulation free of high-wavenumber instabilities. For the 
spectral method, we set the maximum order in the perturbation expansion to M = 5 
and used 16 and 64 unaliased modes in the x- and y-directions, respectively, for the 
same computational domain. Filtering for the spectral method is also applied at every 
time step by removing the Fourier modes higher than the sixth- and 2lst-harmonics of 
the fundamentals in the x- and y-directions. As the BIEM is computationally 
expensive, we could not maintain the same spatial resolution in the BIEM as in the 
spectral method. This led to different filtering parameters in each approach. For both 
methods, At = TJ50 is used as the time-step size. 

The initial conditions for this case are calculated by a third-order perturbation 
analysis. The presence of a fourth wave component makes the analysis ‘by hand’ 
onerously complicated. Therefore, the analysis for initial conditions was worked out to 
third-order using MACSYMA, a program that can handle algebraic manipulations 
symbolically. Using MACSYMA, we also confirmed the results of our third-order ‘hand 
calculations’ for the initial conditions of the special triad alone. 

Figure 5 shows computed results and those from the classical theory which bases the 
growth rate on the initial amplitudes of the linear components. The steepnesses for the 
primary waves were chosen to be 0.1. The computations plotted in figure 5 were carried 
out for swell steepnesses of 0.05 and 0.1. The most important result is that the 
numerical methods show a large reduction in the growth of the tertiary wave when the 
long wave underlies the special triad. This is shown by both the BIEM and the spectral 
method. These two numerical methods show some local differences, but are in good 
global agreement. 

Considering the relatively few control points used on the free surface for the run with 
the BIEM, it is essential to confirm the convergence with the spatial resolution. We 
could not double the number of control points on the surface as it was not 
computationally feasible. However, we were able to use twice as many panels in the x- 
direction and compute the tertiary wave amplitude for swell steepness of 0.1 as shown 
by the dotted lines. It follows closely the one with fewer panels. We found this 
convincing for the convergence, and did not perform the entire simulation. 

In addition to the effects of small standing waves due to limiting initial conditions 
to third-order, figure 5 shows a periodicity in the growth rate with a period of 1.2 of 
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FIGURE 5. A comparison of the spectral method with the BIEM in the presence 
of an underlying long wave with steepnesses of 0.05 and 0.1. 

the normalized units of the abscissa of the figure. This periodicity is also particularly 
evident in the later figure 7. An analysis of the numerical system has shown that this 
is due to the time-varying phase differences of the long wave and the k, primary wave 
which propagate in the same direction. The computational domain length contains one 
long wavelength and four lengths of the k, wave. As time progresses, the long wave 
overtakes the k, wave by virtue of its larger phase velocity. This leads to a periodic time 
structure with period equal to A,  divided by the difference in the phase velocities of the 
long and k, waves. This period is 1.56 s which corresponds to normalized distances of 
1.23 units in the figures. The space-time transformation for these figures is based on 
the group velocity of the tertiary wave. 

In view of the good agreement between the BIEM and the spectral method in the 
presence of the long underlying wave, we will use the spectral method to predict the 
long-term evolution of the tertiary wave for comparisons with experiment. Figure 6(a) 
and 6(b) show the tertiary wave amplitudes from the experiment and the spectral 
method. These figures also contain spectral method results for tertiary wave growth in 
the absence of the long wave to help demonstrate the effect of the long wave on tertiary 
wave growth. 

In figure 6(a), the primary waves have a steepness of 0.1 and co-exist with a long 
underlying wave of steepness 0.05. The measured amplitudes at the three middle points 
are in good agreement with the results of the spectral method. The first point differs by 
an amount corresponding to 1.4 mm and the last point by 1.8 mm. 

In the next run, whose results are in figure 6(b), we increased the steepness of the first 
and second primary waves to 0.174 and 0.180 respectively. The swell amplitude was 
kept the same. In this case, the numerical computation broke down after a time of 
13.9 s which corresponds to a propagation distance of 11 tertiary wavelengths on the 
basis of the tertiary wave group velocity. At shorter distances, agreement between the 
measurements and the numerical results is reasonably good. In the more distant region, 
corresponding to times subsequent to breakdown of the numerical solution, the 
measured amplitudes are reduced. 

The breakdown of the numerical solution might be the result of a physical instability 
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associated with the combination of the swell and higher amplitudes of the primary 
waves. To test this possibility, we performed a two-dimensional BIEM calculation for 
the combination of the long primary wave and the underlying swell. We know (Olmez 
1991) that our BIEM calculations can be taken very nearly to the point of physical 
instability and by taking a two-dimensional case, our computational resources allowed 
a long enough run. The BIEM computations broke down when used with the same 
spatial resolution and filtering parameters as in the three-dimensional case. 

The interaction of the swell with the short primary wave induces a second-order 
bound component at a frequency of 20, - 20,. As the wavelength of the swell was four 
times the wavelength of the long primary, the circular frequency of the swell turns out 
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FIGURE 7. A comparison of the spectral method with experiment for primary waves of steepness 
0.1 in the presence of an underlying long wave of steepness 0.075. 

to be twice the frequency of the long primary. This makes the frequency of the second- 
order bound component the same as the frequency of the free-travelling tertiary wave. 
We calculated the magnitude of this bound component based on the third-order 
perturbation approximation. Although its contribution to the amplitude of the tertiary 
wave was found to be rather insignificant, we repeated the experiment with a different 
wavelength for swell that does not induce a bound component at the frequency of the 
tertiary. We selected a swell that has a wavelength of 5h, with a higher steepness of 
0.075. This would have a more profound influence on the tertiary wave growth. We 
kept the primary wave steepnesses at 0.1. 

Figure 7 shows the amplitude of the tertiary wave as measured at the five stations 
and compares it with the results of the spectral method. Spectral method results for the 
absence of the long wave are also shown for comparison. As expected, the reduction 
in the tertiary wave growth is more pronounced owing to the presence of a steeper 
swell. Again, the spectral method is in good qualitative agreement with the observed 
amplitudes for the three middle points. The first and last points have amplitudes that 
are different from the computations by 1.7 and 1.9 mm respectively. The experimental 
results are consistent with our numerical findings that the presence of a long underlying 
wave strongly influences the growth of the tertiary wave. In the last two sections, we 
consider the mechanism that leads to a reduction in the tertiary wave growth and 
discuss its implications. 

6. Interactions leading to the reduction in tertiary wave growth in the 
presence of the long wave 

In Olmez (1991), the perturbation expansion up to third order is given for the 
interacting triad in the presence of the long wave. Although the purpose of this 
expansion was to set initial conditions for the subsequent computations, we can use it 
here to qualitatively interpret why the presence of the long wave reduces the growth of 
the tertiary wave. A close examination of the third-order interaction terms reveals that 
some of them have the same length and frequency as the first-order primary wave 
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FIGURE 8. A comparison of the perturbation theory (based on altered amplitudes) with the 
spectral method in the absence and presence of the underlying long wave. 

components. As a result, the sum of the elevations of the first- and third-order 
components of the surface elevation of the nth primary wave (n = 1,2) has the form 

+ AF,),(a,, k,)l cos (k ,  x - w,o, (20) 
where a, is the first-order amplitude and YM= 1 when n = 2 and vice versa. The 
superscripts in parentheses denote the order. The A,,3 term is due to mutual 
interactions of the nth primary wave with the long wave, the A,, , term is due to mutual 
interactions of the nth primary wave with the mth primary, and the A,, , term is due 
to interactions of the nth primary with itself (Stokes effect). The correction to the first- 
order amplitude of a wave a&) due to its third-order interaction with another wave 

(21) 
a,@,) can be expressed as 

A:;) = a, a; C(k,, k,, O), 
where 8 is the angle between the wave components. When the wave directions are 
within 90” of each other, the coupling coefficient, C, is always negative (Olmez 1991) 
so it represents a reduction in wave amplitude. 

The interaction is quite significant for the conditions of our experiments and 
numerical studies. For example, when all wave steepnesses are 0.1, the amplitude 
reduction of the first primary wave is 37 %. This results in a reduction in the tertiary 
wave growth by about 60 YO. This relatively large effect occurs because a3 k ,  is not 
small. When we examine the velocity potential of the first primary, we find a similar 
reduction in its component having the phase (k,  x - w, t).  The combined first- and 
third-order wave amplitude and the velocity potential components with this phase 
satisfy the linear free-surface boundary conditions to within 4 YO. The implication is 
that the combined first- and third-order primary wave ‘looks like’ a smaller linear wave 
due to third-order interactions with the long wave. When we evaluate the theoretical 
growth rate from the classical theory (Longuet-Higgins 1962) using the reduced 
amplitudes of the primary waves in lieu of the first-order components, the result of this 
‘prescription’ is in good agreement with the spectral method prediction as shown in 
figure 8. 

L-2) + L-? = [a, + AF,),(a,, 03, k,, k3) + A:,)&,, a,, k,, k,) 
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FIGURE 9. Block diagram of nonlinear interactions of the special triad with and without the presence 
of the long wave. Circles represent wave components. Boxes represent nonlinear interactions. 

The important interactions, both with and without the presence of the long wave are 
indicated diagramatically in figure 9. The upper part of the figure represents the 
interaction for the special triad alone. The primary waves interact nonlinearly to 
transfer energy to the tertiary wave. The lower part of the figure, which includes the 
presence of the long wave, is more complicated. Nonlinear interactions between the 
long wave and each primary wave generate a third-order wave having the same lengths 
and frequencies as the primary waves, but of opposite phase. They are indicated by I, 
and 11, in figure 9. The elevation and velocity potential of each of these third-order 
components very nearly satisfy the linear free-surface boundary condition. Thus when 
these third-order components are added to their respectively first-order primary 
components, the results are very nearly the same as linear components of reduced 
amplitudes. The reduction is a significant fraction of the linear wave amplitude because 
the long-wave amplitude is so much greater than the amplitudes of the primaries. The 
same physical nonlinear interaction that exists for the special triad alone exists for the 
waves whose amplitudes have been reduced by third-order interactions with the long 
wave and this results in less nonlinear energy transfer to the tertiary wave than occurs 
in the absence of the long wave. 

An alternative, although entirely complementary, explanation has been suggested to 
us by Professor Owen Phillips. The long wave modulates the amplitudes, frequencies 
and wavenumbers of the primary waves. Because of the frequency and wavenumber 
modulations, parts of the primary waves go in and out of resonance with only the in- 
resonance part contributing to the energy transfer. The explanations are related 
because the modulated primary waves are composed of components with reduced 
amplitudes at the initial frequencies and wavenumbers and sidebands at the sum and 
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difference frequencies and wavenumbers. Only the components at the original 
frequencies and wavenumbers satisfy the resonance condition and contribute to the 
resonant interaction. This relationship is demonstrated in the growth rates shown in 
the examples. They contain a component with a period equivalent to 1.23 tertiary 
wavelengths which is the relative period between the long wave and the first primary. 
The growth rates go up and down as the system goes into and out of resonance at this 
period, with the mean rate of growth corresponding to the third-order-modified 
resonating components. 

7. Implications for calculation of energy transfer to the high-frequency tail 
of a wave spectrum 

The accepted method for calculating nonlinear energy transfer between frequency 
(or wavenumber) components of a gravity wave spectrum is based on the quartet 
interactions, but considered in a stochastic way. This is the method pioneered by 
Hasselmann (1962). The ‘input’ wave information is based on the linear components 
of the wave amplitudes. From the findings here, we would expect the calculated energy 
transfer to the high-frequency tail, based on resonant quartet interactions among linear 
wave components, to be an overestimate due to the presence of large long waves that 
are not part of the quartet. However, if the ‘input components’ are taken as the linear 
components plus the third-order amplitude modifications due to each component 
interacting with all the others, the estimate should be better. This issue has not been 
raised for most studies of nonlinear energy transfer because they deal mainly with the 
energy-containing portion of the spectrum, not the high-frequency tail. The latter is the 
part that exists ‘on top of’ much larger and longer waves. 

When one measures ocean waves and separates the measurement into frequency or 
wavenumber components, each one corresponds to the complete component, not just 
the linear one. To calculate an estimate of the energy transfer distribution accurately 
in the high-frequency tail, it is desirable to know the linear and third-order 
components. This has led us to look into the relative sizes of the linear part of the wave 
spectrum, Gll, which is O(A2) and the quadratic part of the spectrum, cBZ2 + cBI3 which 
is O(A4). A is the linear wave amplitude. Gzz results from products of second-order 
wave amplitudes and G13 results from products of first- and third-order wave 
amplitudes. Our development is described in the Appendix. 

Using the results derived in the Appendix, here we evaluate the quadratic corrections 
to a unidirectional sea spectrum whose linear components are taken from the spectrum 
model of Bjerkaas & Riedel (1979). This is not done for quantitative energy transfer 
calculations, which require a multi-directional wave field, but rather to demonstrate 
the importance of the higher-order contributions. One can argue, convincingly, that 
the high-frequency tail of the model spectrum contains all the higher-order corrections. 
However, using the model results as the linear spectrum suffices to show the 
importance of including the third-order amplitude effects when doing resonant energy 
transfer calculations, and of ‘weeding out’ the second-order influence which exists in 
measured spectra, when determining the first- and third-order amplitudes to be 
included. The important third-order component propagates at the same celerity as the 
linear component, but the second-order component at the same frequency has only half 
the celerity so it does not participate in the same resonant energy transfer interactions. 

We carried out the quadratic spectrum calculations for two wind conditions: (i) a 
19.5 m wind speed of 5 m s-l with a friction velocity of u* = 0.163 m s-l, and (ii) a 
19.5 m wind speed of 10 m s-l with a friction velocity of 0.362 m s-’. The friction 
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FIGURE 10. One-sided non-dimensionalized Bjerkaas-Riedel spectra : - .- , linear spectrum Gll; 
--, quadratic spectrum 1GI31 (values are negative); ----, quadratic spectrum GZ2. 

velocities were chosen by the methods given in Bjerkaas & Riedel(l979). Since U * / U ~ ~ . ~  
differs for the two calculations, the resulting spectra need not obey a similarity law. 
Nevertheless, when they are plotted in the non-dimensional form of figure 10 they are 
indistinguishable from each other. G13 dominates @22 in the frequency range of 0.5 to 
2.0 times the spectral peak frequency. It is frequencies above this range that are of 
interest for our purposes here. There, the two quadratic spectral corrections are of 
similar magnitude, with but of opposite sign. For 
frequencies above about 4.5 times that of the spectral peak, the quadratic corrections 
to the spectrum exceed the ordinary linear spectrum so there the effects of still higher- 
order corrections might be important. 

For resonant energy transfer interactions in which the energy-providing waves have 
frequencies less than 4.5 times that of the spectral peak, it is expected that the 
Hasselmann theory will be most accurate if wave amplitudes corresponding to Gll and 
GI3 are used. The Q13 correction becomes important for frequencies higher than 2.5 
times that of the spectral peak. When one measures the spectrum there appear to be 
two methods for separating out @22, which needs to be done to obtain the sum of Gll 
and O13. One is to calculate all the components by methods similar to those given in 
the Appendix. This requires first extending the theory to the directional spectrum case. 
Alternatively, if the frequency-wavenumber spectrum is measured, @22 can be 
determined through data analysis. The reason is that both Qll and Q13 will fall on the 
first-order dispersion line, w2 = glkl, whereas @22 will not. 

slightly greater than 

8. Discussion and conclusions 
The principal finding of this paper is that when a resonantly interacting quartet, or 

in particular the special triad studied here, exists on top of a large long underlying 
wave, the energy transfer in the resonantly interacting group is diminished from its 
value in the absence of the long wave. This was demonstrated, both numerically and 
experimentally, when the long wave propagated in the same direction as one of the 
‘energy providing’ interacting waves called ‘primaries ’. For the interacting special 
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triad, when a long wave of amplitude u3 and length about 25 times that of the growing 
tertiary wave, with u3 kter z 2.5, was present the tertiary wave growth rate was reduced 
theoretically to about 60% of its value in the absence of the long wave. The physical 
reason for this is that the nonlinear interaction between the long wave and the primary 
reduces the primary wave amplitude. Mathematically, this is a third-order interaction 
depending linearly on the primary wave amplitude and quadratically on the long-wave 
amplitude. Although our studies here were limited to a primary and a long wave 
propagating in the same direction, use of the interaction coefficients given in Olmez 
(1991) shows that when the two propagation directions are within 90" of each other, 
the primary wave amplitude is reduced. 

The findings are of importance for calculating energy transfer to the high-frequency 
tail, and for that matter to the higher frequency portion of the 'equilibrium range' of 
measured or modelled wave spectra. The reason for this is that the measured spectra 
are influenced not only by the first-order wave amplitudes, but also by higher-order 
components, particularly for the high frequencies and wavenumbers. Our results 
suggest that the classical resonant energy transfer formulae should use the combined 
first- and third-order wave components as inputs to maximize high-frequency accuracy. 
Our study of the quadratic correction to the wave spectrum shows effects with similar 
orders of magnitude from first-third-order contributions and second-second-order 
contributions. These can be separated on the basis of theory or by data analysis if the 
frequency-wavenumber spectrum is known. 

At wave frequencies higher than about 4.5 times that of the spectral peak, the 
magnitudes of the quadratic spectrum corrections exceed the magnitude of the 
spectrum resulting from linear wave components only. At these high frequencies, even 
higher-order corrections could be dominant. 

A second finding is that numerical spectral methods for computing interactions 
between waves of different amplitude and wavenumber scales (q, k,) and (u2, k2), can 
be accurate even when u2kl is not small in comparison to 1. Results of the numerical 
spectral method are virtually identical to those of our fully nonlinear direct calculation 
in which the Green function integral equation is solved at every time step. The same 
reduction in tertiary-wave growth rate due to the long wave was found with our direct 
fully nonlinear method and by a spectral method which is based on perturbation 
theory, but which includes many interacting bound and free wave modes and which 
can accommodate an arbitrary order in the expansion (we used all orders up to and 
including the fifth). Evidently, the spectral method can be accurate for rather large 
values of u,k, if a sufficiently large number of modes and orders are retained. 

Our experimental measurements are in reasonably good agreement with the 
numerical predictions. There is no systematic difference and the scatter in the 
experimental data suggests that differences between the numerical and experimental 
results are due mostly to experimental error. 
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Appendix. Quadratic correction to the linear wave spectrum 
At frequencies several times as large as that of the spectral peak, higher-order 

components of wave elevation make contributions to the wave spectrum that are 
significant in comparison to contributions from the linear components. At the very 
least, one needs to know the linear contributions to the spectrum to calculate energy 
transfer, and it is quite likely that improved estimates can be achieved if the 
contributions from third-order amplitude corrections are included. However, the 
quadratic correction to the wave spectrum includes, as we shall see here, the effects of 
both second- and third-order contributions to the wave elevation which have the same 
orders of magnitude. Tick (1959) first derived formulae for the influence of the second- 
order contributions. Here we look at the problem in a more systematic way which 
yields the entire quadratic correction to the elevation spectrum including the equally 
important effects of second- and third-order wave elevations. Our development is 
described rather briefly here since as it follows along the lines used by Sclavounos 
(1922) for determining the quadratic correction for the spectrum of wave pressure 
which can be referred to for more details. 

As is usual, the velocity potential, $, and the surface elevation, Q are expanded in 
orders of the wave amplitude, with subscripts referring to order: 

$ = $1+$2+$3+ ..., <=  cl+[2+<3+ .... (A 1) 
Each of the velocity potentials, $t,  satisfies the Laplace equation. 

1962) are 
The free-surface boundary conditions expanded up to third-order (Longuet-Higgins 

1 a +...I-[; V$-V$+cG(;v$-v$)+ ... , (A2) 

and 

1 a a 2  + [% (V$.V$) + Cm(V$.V$) + . . . + [;v$-V(v$.V$) + . . .I, (A 3) 

which are satisfied on the quiescent free surface z = 0. In this appendix V = (a/&, 
a/aY,  a/w. 

The first-order velocity potential has the form 

where rr is the circular frequency. For a random sea, B(g)  is a Gaussian-distributed 
random variable with zero mean at each value of g (Kinsman 1984, chapter 7.3; 
Sclavounos 1992). The first-order components of the boundary conditions in (A 2) and 
(A 3), and our presumption of positive-x travelling waves require that 

k = cTlal/g. (A 5 )  
The first-order component of the boundary condition (A 2) gives the first-order surface 
elevation directly as 

cl(x, t )  = lg A ( g )  ei(kz-ut) dg, (A 6) 
where A ( v )  = iaB(g)/g. 
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The second-order component of (A 3) is 

which 

where 

is to be satisfied on z = 0. The solution is 

kernel &(al7 a2) is 

for a1a2 3 0 ,  

for a1a2 < 0 and la1! > la2(, 
-ial a i /g2  for a1 u2 < 0 and la2( > la,l. 

Understanding (A 9) requires remembering that each wave component at the physical 
frequency a contributes to the integrands at both a and -a. The second-order 

(A 10) 

component of (A 2) is 

which is to be satisfied on z = 0. Substituting the first- and second-order potentials in 
(A 10) provides the expression for the second-order wave elevation: 

84 a241 
gc2 = -2-{ at 1 m-i('@l "$1)9 

c2(x, t )  = /b(al) A(a2)  Z2(al, a2) ei[(ki+kz)z-(ai+uz)tl dal  da,, (A 11) 

where 

Z2(n17a1) = "( a1 a 2  

a1 a 2  g 

The third-order component of (A 3) is 

which is to be satisfied on z = 0. Using the linear and second-order solutions obtained 
earlier, this leads to the following form of the third-order potential: 

e~k,+kz+k3~z+i ( [ (k l+k ,+k, )  s-(a,+u,+a 3) t da, da, da,, (A 14) 
where kernel F,(al, a2, a3) is 
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where a = al + a2 + a3 and a: = glk, + k, + k31. The Cauchy principal values appear in 
(A 14) because the apparent singularity at a2 = a: in (A 15) is to be replaced by a non- 
singular secular form at this point. For the unidirectional travelling waves considered 
here, the secular term is out of phase with the linear wave component and does not 
contribute to the third-order potential (Sclavounos 1992) and is therefore properly 
neglected by the Cauchy principal value. The corresponding wave elevation can be 
found from (A 2): 

which leads to 

C3(x, t )  = {{{A(al) A(a2)  A(r3 )  Z3(a 1, a 2, a 3 ) eir(lc1+lc2+k3)2-(ul+u2+u3)t1 da, da, da3, 

&(a,, a 3 1  [ k i k  k3l- Ikil(k2 + k3)I . (A 18) 1 
The objective now is to determine the complete form of the quadratic spectrum. The 
autocorrelation function of the wave elevation is the real part of the ensemble average: 

W, 7) = ~e ~ [ c ( : ( t )  ~ * ( t  + 711, (A 19) 
where * denotes the complex conjugate. The double-sided spectrum is 

2x 

In terms of the elevation components up to third order: 

W ,  7) = Re [EICl(t) CXt + 711 + E[c2(t) C% + 711 + ~ [ c , ( t )  C:(t + 7) + C 3 M  C;(t + 711 + . . .I 
(A 21) = R 1 l ( t ,  7, + R22(t ,  7, + R13(t, 7, + * * * 3 

where the last two terms form the quadratic part of the autocorrelation function. Note 
that EICl(t) Cz(t + T)]  vanishes for a Gaussian process. The spectrum, including linear 
and quadratic components, will be obtained by taking the Fourier transform of (A 21), 
term by term, and is denoted as 

(A 22) 
Using the expressions for the autocorrelation components (A 21) and for the second- 
order surface elevation (A 11) : 

@(w) = Qll(W) + CPz2(w) + Ql3(0) + . . . . 

Rzz( t ,  7, = Re l/lb[A(rl) A*(c3) A*(64)1 z2(f11, a 2 1  Z,*(a37 a4) 

e-i(ol+oz-u8-ur) t+i(a3+a 4) 7 da, da, da, du4. (A 23) 
Since the A are zero mean Gaussian variables and since (Kinsman 1984) 

E[A(a1) A*@,)] = S(a1) &(a, - a219 (A 24) 



This reduces (A 23) to 

The first term on the right-hand side of (A 27) is due to non-zero mean value of the 
second-order wave elevation which is not of interest here and will be disregarded. The 
remaining term can be integrated once to give 

@,,(w) = 2 [I S(a) S(w - a) Z,(a, w - a) Z,*(a, o - a) dn. (A 28) 

It should be noted that contributions to @,, at frequency w are due to products of wave 
components at different frequencies which sum to w. 

Using (A 6), (A 17) and (A 21): 

e-i(ul-uz-u3-u4) t+i(u,+o,+u T 
4) da, da, da3 da, 

+~~l~[A*(al)  A(a4)]z3(a2, a39 

1 da,da,da,da, , I e-i(-u,+o,+03+u4) t+iu T 

which reduces to 

&(T) = [sS(al) S(a3) Z,*(a,, a3, - a3) eiulr da, da3 

+ Ss9.J S(a,) Z3*(a2, al, - a,) eiulTda, da, 

+ l l S ( n , )  S(a,) Z$(a2, - a,, a,) eiulrda, da,. 
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This can be written as 

(A 31) 

where G(al, a23 CT3) = z3(a1, a2? + z:(a13 a2, CT3)' (A 32) 

By taking the Fourier transform of (A 3 1) and integrating over a1 : 

Q13(w) = S(O) S(CT) [G(w, CT, - CT) + G((T, W ,  - CT) + G(a, - a, o)] da. (A 33) SIma 
The Q13 spectrum at frequency w is proportional to the linear spectrum, @,,, at the 
same frequency w and also to a weighted average of the entire Qll spectrum. For our 
unidirectional seas the weighting function is always negative. 

Equations (A 28) and (A 33) together complete the quadratic part of the linear 
spectrum. 
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